Operators

Assignment Operator =

The assignment operator, =, assigns a value to a variable.

In BCX, a literal decimal numeric value can be assigned to a variable, as in this example

```
DIM Number

Number = 20200628

PRINT Number

```

Result:

```
20200628

```

In BCX, a literal hexadecimal numeric value can be assigned to a variable, as in this example

```
DIM Number

Number = 0x1343CB4

PRINT Number

```

Result:

```
20200628

```

In BCX, a literal octal numeric value can be assigned to a variable, as in this example

```
DIM Number

Number = %0115036264

PRINT Number

```

Result:

```
20200628

```

In BCX, a literal binary numeric value can be assigned to a variable, as in this example

```
\$BCXVERSION "7.4.7 (2020/06/29)"

DIM Number

Number = 0b00000001001101000011110010110100

PRINT Number

```

Result:

```
20200628

```

Order of Operations

When several BCX operators occur in the same statement, they are executed in the following order:

```
Associativity
--------------------------------------------------------------------------------------------------------
()  parentheses or function call         left-to-right
[]  array element
.   TYPE or UNION member
->   pointer reference to member
SIZEOF  size of object in bytes
--------------------------------------------------------------------------------------------------------
++   post increment (lvalue++)           right-to-left
++   pre increment  (++lvalue)
--   post decrement (lvalue--)
--   pre decrement  (--lvalue)
-   unary minus
+   unary plus
~   bitwise complement ("ones complement")
BNOT   bitwise complement ("ones complement")
*   contents of
(data type)   cast (C-style type conversion)
--------------------------------------------------------------------------------------------------------
*  multiply                             left-to-right
/  divide
%  remainder
--------------------------------------------------------------------------------------------------------
-   subtract
--------------------------------------------------------------------------------------------------------
<<   bitwise left shift                  left-to-right
>>   bitwise right shift
--------------------------------------------------------------------------------------------------------
<    scalar less than                    left-to-right
<=   scalar less than or equal to
>    scalar greater than
>=   scalar greater than or equal to
--------------------------------------------------------------------------------------------------------
=     scalar equal                       left-to-right
EqualTo    scalar equal
<>    scalar not equal
><    scalar not equal
NotEqualTo scalar not equal
--------------------------------------------------------------------------------------------------------
BAND   bitwise and                         left-to-right
--------------------------------------------------------------------------------------------------------
&      bitwise and                         left-to-right
--------------------------------------------------------------------------------------------------------
XOR   bitwise exclusive or                left-to-right
--------------------------------------------------------------------------------------------------------
BOR   bitwise or                          left-to-right
--------------------------------------------------------------------------------------------------------
|     bitwise or                          left-to-right
--------------------------------------------------------------------------------------------------------
AND   conditional and                     left-to-right
--------------------------------------------------------------------------------------------------------
ANDALSO   conditional and                     left-to-right
--------------------------------------------------------------------------------------------------------
&&   conditional and                     left-to-right
--------------------------------------------------------------------------------------------------------
OR   conditional or                      left-to-right
--------------------------------------------------------------------------------------------------------
ORELSE   conditional or                      left-to-right
--------------------------------------------------------------------------------------------------------
||   conditional or                      left-to-right
--------------------------------------------------------------------------------------------------------
=   assignment operator                 right-to-left
also   +=    -=    *=    /=
&=    |=   >>=   <<=
--------------------------------------------------------------------------------------------------------

,   sequential expression               left-to-right
--------------------------------------------------------------------------------------------------------

```

BCX does not support the assignment operators ^= and %=. In BCX the ^ symbol as the exponentiation operator, while in the C language, the ^ symbol is used for the bitwise exclusive or (XOR) operator. The shortcut %= does not work because, in BCX the % symbol is used as the data type identifier appended to an INTEGER variable. To use either, inline C code must be used, for example,

```
! a^=2;

! a%=2;

```

If the operations are different and are of the same level, the leftmost one is executed first and the rightmost last.

The order of operations in the following example

```
DIM a%

a% = 42 + 6 * 4 / 2 - 1

PRINT a%

```

is as follows:

```
1. 6 * 4   (= 24)
2. 24 / 2  (= 12)
3. 12 + 42 (= 54)
4. 54 - 1  (= 53)

```

The above example can be expressed unambiguously, with parentheses, as

```
DIM a%

a% = (42 + ((6 * 4) / 2)) - 1

PRINT a%

```

Exponentiation ^ operator

Example 1:

```
DIM a, b

b = -3
a = 10 ^ b
? a

```

Result:

```
0.001

```

Example 2:

```
DIM a#

a# = 5 ^ 2
PRINT a#
a# = 25 ^ 0.5
PRINT a#

```

Result:

```
25
5

```

Example 3:

```
DIM cum#
DIM tcont, pd#

tcont = 1
cum#[tcont] = 17
pd# = 2
PRINT (cum#[tcont] ^ (1 / ((tcont + 1) / pd#)) - 1) * 100

PRINT 7 ^ (MOD(13, 7))
PRINT (SIN(13)) ^ (SIN(13))
PRINT pd ^ (pd ^ 2)

PRINT pd ^ pd
PRINT 7 ^ (IMOD(3,2))

PRINT POW(2, POW(2, POW(2, 2)))
PRINT 2 ^ (2 ^ (2 ^ (2)))
PRINT pd ^ pd - pd ^ (LOG(pd)) - (SIN(pd)) ^ 7

```

Result:

```
1600
117649
0.6946632571379008
16
4
7
65536
65536
1.869218636052765

```

XOR operator

 Syntax: ``` RetVal% = Number1 XOR Number2 ``` Parameters: RetVal% Returned value. Number1 Integer number. Number2 Integer number.

Remarks:

The logical "exclusive or"(sometimes called the difference detector) operator compares corresponding bits in Number1 and Number2 then sets the corresponding bit in RetVal% according to the following table:

```
---------------------------------------------------------
Bit in Expression1  Bit in Expression2  Bit in Result
---------------------------------------------------------
1                  1                  0
1                  0                  1
0                  1                  1
0                  0                  0
---------------------------------------------------------

```

Example 1:

```
DIM a
a = 1
a = a XOR 1
? a
a = a XOR 1
? a
a = a XOR 1
? a

```

Result:

```
0
1
0

```

Note the bit toggling effect.

Example 2:

```
\$COMMENT
--------------------------------------------------------------------------------
FUNctions with bits!  by Jeff Nope  jeffnope@hotmail.com
Feel free to use these, you just can't hold me responsible,
and give credit where credits due :-)
--------------------------------------------------------------------------------
All BitNum's are zero based
--------------------------------------------------------------------------------
a = BitClr(a,BitNum)

Clears a particular bit in variable a (to a value of 0).
--------------------------------------------------------------------------------
a = BitSet(a,BitNum)

Sets a particular bit in variable a (to a value of 1).
--------------------------------------------------------------------------------
b = BitTst(a,BitNum)

Determines whether a given bit is set in a.

function result
b = TRUE if the specified bit is set (that is, has a value of 1) and
b = FALSE if the bit is cleared (that is, has a value of 0).
--------------------------------------------------------------------------------
a = BitTgl(a,BitNum)

Toggles a particular bit in variable a
--------------------------------------------------------------------------------
z\$ = dec2bin\$(a,length)
Converts variable a into a string representing the binary value of a.
The length variable is optional for formating, for example 8 gives a byte.
This function is the opposite of BIN2DEC(z\$) a BCX built in function.
--------------------------------------------------------------------------------
\$COMMENT

DIM a,b,i
DIM z\$
z\$="101001"

? "z\$ = " & z\$
? "a = BIN2DEC (z\$)"
a = BIN2DEC (z\$)  'BCX built in function
? "a =" & a

?

?"z\$ = dec2bin\$(a,8) (with optional length):"
z\$ = dec2bin\$(a,8) 'the optional length of 8, will cause leading zero's here
? "z\$ = " & z\$ & "b"

?

?"z\$ = dec2bin\$(a) (without the optional length):"
z\$ = dec2bin\$(a)
? "z\$ = " & z\$ & "b"

?

? "a = BitSet(a,1)"
a = BitSet(a,1)      'set bit 1 in variable a
z\$ = dec2bin\$(a,8) 'the optional length of 8, will cause leading zero's here
? "a = " & a & " : " & z\$ & "b"

?

? "a = BitClr(a,1)"
a = BitClr(a,1)
z\$ = dec2bin\$(a,8) 'the optional length of 8, will cause leading zero's here
? "a = " & a & " : " & z\$ & "b"

?

? "a = BitTgl(a,1)"
a=BitTgl(a,1)      'make sure it can toggle a bit
z\$ = dec2bin\$(a,8) 'the optional length of 8, will cause leading zero's here
? "a = " & a & " : " & z\$ & "b"

?

? "a = BitTgl(a,1)"
a=BitTgl(a,1)      'make sure it can toggle a bit back
z\$ = dec2bin\$(a,8) 'the optional length of 8, will cause leading zero's here
? "a = " & a & " : " & z\$ & "b"

?

? "b = BitTst(a,i) loop:"
for i = 7 to 0 step -1 'loop for 8 bits starting at the MSB
b=BitTst(a,i)   ' Test the i'th bit in a
? b;            ' print the bits one at a time
next

END

FUNCTION BitTst(a,BitNum)  'BitNum is zero based
DIM tmp
tmp = a BAND 1 << BitNum
if tmp > 0 then tmp = 1
FUNCTION = tmp
END FUNCTION

FUNCTION BitSet(a,BitNum)  'BitNum is zero based
DIM tmp
tmp = a BOR 1 << BitNum
FUNCTION = tmp
END FUNCTION

FUNCTION BitClr(a,BitNum)  'BitNum is zero based
DIM tmp
tmp = a BAND ((1 << BitNum)XOR 0xFFFFFFFF)  'the XOR with all 1's causes all bits to toggle
FUNCTION = tmp
END FUNCTION

FUNCTION BitTgl(a,BitNum)  'BitNum is zero based
DIM tmp
tmp = a XOR 1 << BitNum  'the XOR with 1 causes bit to toggle
FUNCTION = tmp
END FUNCTION

FUNCTION dec2bin\$ OPTIONAL (a,length=0)  'optionally formated
DIM i,tmp,t,T\$

if length=0 Then   'we don't know the length here

tmp=a
while tmp>0
tmp = tmp >> 1
length++
wend
END IF

t= 1

for i= 1 to length 'we know the length here
tmp= a AND t    'logical AND to test the bit
if tmp = 0 then
T\$= "0" & T\$
else
T\$= "1" & T\$
END IF
t= t<<1
next

FUNCTION = T\$
END FUNCTION

```

BOR operator

 Syntax: ``` RetVal% = Number1 BOR Number2 ``` Parameters: RetVal% Returned value. Number1 Integer number. Number2 Integer number.

Remarks:

The bitwise BOR operator compares corresponding bits in numeric-expression1 and numeric-expression2, then sets the corresponding bit in the result according to the following table:

```
--------------------------------------------------------
Bit in Expression1  Bit in Expression2  Bit in Result
--------------------------------------------------------
1                  1                  1
1                  0                  1
0                  1                  1
0                  0                  0
--------------------------------------------------------
```

Example:

```
DIM a, b
a = 0
b = a BOR 1
? b
b = a BOR 0
? b

```

Result:

```
1
0

```

BAND operator

 Syntax: ``` RetVal% = Number1 BAND Number2 ``` Parameters: RetVal% Returned value. Number1 Integer number. Number2 Integer number.

Remarks:

The BAND bitwise operator compares corresponding bits in two numeric expressions and sets the corresponding bit in the result to 1 if both bits are 1. The BAND operator uses this "truth table":

```
--------------------------------------------------------
Bit in Expression1  Bit in Expression2  Bit in Result
--------------------------------------------------------
1                  1                  1
1                  0                  0
0                  1                  0
0                  0                  0
--------------------------------------------------------

```

Example:

```
DIM a, b
a = 1
b = a BAND 1
? b
b = a BAND 0
? b

```

Result:

```
1
0

```

Example:

The following program demonstrates the use of BAND to determine whether a number is even or odd.

```
DIM A%
INPUT "Number ? "; A%

IF A% BAND 1 THEN
PRINT A%, " is odd"
ELSE
PRINT A%, " is even"
END IF

```

BNOT operator

 Syntax: ``` RetVal% = BNOT Number ``` Parameters: RetVal% Returned value. Number Integer number.

Remarks:

BNOT is a bitwise inversion operator, commonly known as "One's Complement". BNOT inverts binary bits in a numeric expression to 0 if 1 and to 1 if 0. The BNOT operator uses this "truth table":

```
------------------------------------------------------
Bit in Expression  Bit in Result
------------------------------------------------------
1                  0
0                  1
------------------------------------------------------

```

Example:

```
DIM int1%, int2%
DIM BINstr1\$, BINstr2\$

int1% = 12345
PRINT BINstr1\$

int2% = BNOT int1%
BINstr2\$ = BIN\$(int2%)
PRINT BINstr2\$

```

Result:

```
00000000000000000011000000111001
11111111111111111100111111000110

```

ANDALSO and ORELSE Operators

ANDALSO and ORELSE were added to the BCX lexicon for the convenience of users of other BASIC dialects which have these operators. The functionality of ANDALSO is equivalent to the C language && operator which will evaluate the second operand only if the first evaluates as TRUE (non zero). The functionality of ORELSE is equivalent to the C language || operator which will evaluate the second operand only if the first evaluates as FALSE (zero).

Example:

```
DIM AS BOOL bReault1, bReault2, bX1, bX2
DIM szBuf\$
bX1 = TRUE
bX2 = FALSE
bReault1 = bX1 ANDALSO bX2
bReault2 = bX1 ORELSE bX2
PRINT "bX1 bX2 bX1 ANDALSO bX2 bX1 ORELSE bX2"
sprintf(szBuf,"%3i %3i     %2i               %2i",bX1,bX2,bReault1, bReault2)
PRINT szBuf
bReault1 = bX1 AND bX2
bReault2 = bX1 OR bX2
PRINT "bX1 bX2 bX1 AND     bX2 bX1 OR     bX2"
sprintf(szBuf,"%3i %3i     %2i               %2i",bX1,bX2,bReault1, bReault2)
PRINT szBuf
bReault1 = bX1 && bX2
bReault2 = bX1 || bX2
PRINT "bX1 bX2 bX1 &&      bX2 bX1 ||     bX2"
sprintf(szBuf,"%3i %3i     %2i               %2i",bX1,bX2,bReault1, bReault2)
PRINT szBuf
PAUSE

```

Result:

```
bX1 bX2 bX1 ANDALSO bX2 bX1 ORELSE bX2
1   0      0                1
bX1 bX2 bX1 AND     bX2 bX1 OR     bX2
1   0      0                1
bX1 bX2 bX1 &&      bX2 bX1 ||     bX2
1   0      0                1

```

Truth Table for Logical Operators

When using the operators NOT, AND, OR, XOR, a space must be before and after the operator, like this,

```
IF (c > 64 AND c < 91) OR (c > 96 AND c < 123) THEN

```

Each operator returns results as indicated below. A "T" indicates a true value and an "F" indicates a false value. Operators are listed in order of operator precedence.

```
Values of      Value Returned by Logical Operator
X    X    X
NOT  AND  OR   XOR
X     Y          X    Y    Y    Y
------------------------------------
T     T          F    T    T    F

T     F          F    F    T    T

F     T          T    F    T    T

F     F          T    F    F    F

```

Bit Shift << and >> operators

Purpose: These operators shift the first parameter left (<<) or right (>>) by the number of places in the second parameter. Both parameters must be integers.

Shift Left << operator

 Syntax: ``` RetVal% = IntNum% << NumPlaces% ``` Parameters: RetVal% Returned integer value. IntNum% Integer number to be shifted left. NumPlaces% Number of places to the left that IntNum% is to be shifted.

Remarks: Vacated right bits are set to 0.

Shift Right >> operator

 Syntax: ``` RetVal% = IntNum% >> NumPlaces% ``` Parameters: RetVal% Returned integer value. IntNum% Integer number to be shifted right. NumPlaces% Number of places to the right that IntNum% is to be shifted.

Remarks: Vacated left bits are set to 0 if the integer type is unsigned. Otherwise, they are filled with copies of the sign bit.

Example:

```
DIM value%

value% = 32768 << 1 'Shift left 1 place
PRINT value% ' value% will equal 65536

value% = 32768 >> 1 'Shift right 1 place
PRINT value% ' value% will equal 16384

```

Relational Operators

Relational operators are used to compare two values. The result of the comparison is either "true"(nonzero) or "false"(zero). This result can then be used to make a decision regarding program flow. Although BCX treats any nonzero value as true, true is usually represented by 1. When arithmetic and relational operators are combined in one expression, the arithmetic operations are always done first.

```
Operator   Relation                 Expression

=      Equality                    X = Y
<>     Inequality                  X <> Y
<      Less than                   X < Y
>      Greater than                X > Y
<=     Less than or equal to       X <= Y
>=     Greater than or equal to    X >= Y

Note: The keyword IS can be used in place
of the = equality relational operator.

IS     Equality                    X IS Y

The LET keyword can precede statements
containing the equality relational operator(=).

LET A% = 6 * 6

```

In the following example BCX will give a different answer than most dialects of BASIC.

```
DIM RetVal%, A%, B%, C%

RetVal% = 3 * ((A% >= B%) + (B% <= C%))

? RetVal%

```

Using BCX, the example above returns an integer value of 6. Using QBASIC, the result is -6. The reason is because most BASIC dialects define TRUE as -1, but in the C language, TRUE is defined as 1. Each parenthetical evaluates to TRUE and in QBASIC, the statement reduces down to 3 * ( -1 + -1). In BCX, the statement reduces down to 3 * (1 + 1).

Example:

```
DIM c
DIM d

c = 42
d = 6

IF d < c  THEN ? "It works!"
IF d > c  THEN ? "error"
IF d <> c THEN ? "It works!"
IF d = c  THEN ? "error"
IF d <= c THEN ? "It works!"
IF d >= c THEN ? "error"

```

Result:

```
It works!
It works!
It works!

```

String Concatenation Operators + and &

A string expression consists of string constants, string variables, and other string expressions combined by string concatenation operators. The act of combining two strings is called concatenation.

String concatenation will not work with strings containing an embedded ASCII NULL.

In BCX, string concatenation may use the plus (+) symbol for concatenation as long as one of the string expressions being concatenated is a string variable appended with the \$ string data type specifier. Otherwise, string concatenation must be performed using the ampersand (&) symbol.

For example, the following program fragment combines the string variables A\$ and B\$ to produce the value FILENAME:

```
DIM A\$
DIM B\$

A\$ = "FILE"
B\$ = "NAME"
PRINT A\$ + B\$
PRINT "NEW " & A\$ & B\$

```

Result:

```
FILENAME
NEW FILENAME

```

The following code is not legal!

```
DIM A AS STRING
DIM B AS STRING

A = "FILE"
B = "NAME"
PRINT A + B ' Either A and/or B must be A\$ and/or B\$
PRINT "NEW " + A + B ' Either A and/or B must be A\$ and/or B\$

```

Result:

The compiler will complain that operands of + have incompatible types.

String Comparison Operators

Like the String Concatenation Operators in the section above, String Comparison Operators must be used with a string data type specifier (\$). A string comparison between "S" and "T", done in this code,

```
DIM S AS STRING
DIM T AS STRING
S="Test"
T="Test"
IF T\$ = S\$ THEN
PRINT " S equals T"
ELSE
PRINT " S does not equal T"
END IF

```

works as expected while the following code, in which the string data type specifiers (\$) have not been appended to the "S" and "T" variables,

```
DIM S AS STRING
DIM T AS STRING
S="Test"
T="Test"
IF T = S THEN
PRINT " S equals T"
ELSE
PRINT " S does not equal T"
END IF

```

will not produce the expected answer for a string comparison because in the line

```
IF T = S THEN

```

which BCX translates as

```
if(T==S)

```

the "T" and the "S" are translated as pointers.

With the string data type specifiers appended, that is, "T\$" and "S\$", the BCX translator produces a string comparison

```
if(strcmp(T,S)==0)

```

In BCX, string notation is handled opposite compared to most other BASIC dialects. In BCX strings are nothing more than a CHAR PTR which means you can do assignments and comparisons to the pointer itself or to the contents that it is being pointing to. In BCX we indicate we want to work with the contents by using the "\$" type specifier. No type specifier means we want to work with the pointer itself and not the space that it points to.

Strings can be compared using the following relational operators:

```
Operator   Relation                 Expression

=      Equality                    X\$ = Y\$
<>     Inequality                  X\$ <> Y\$
<      Less than                   X\$ < Y\$
>      Greater than                X\$ > Y\$

```
```
☞ <= and >= cannot be used to compare strings.

```

String comparisons are made by taking corresponding characters from each string and comparing their ASCII codes. If the ASCII codes are the same or all the characters in both strings, the strings are equal. If the ASCII codes differ, the lower code number precedes the higher. If the end of one string is reached during string comparison, the shorter string is smaller if they are equal up to that point. Leading and trailing blanks are significant.

Example:

```
DIM c\$
DIM d\$

c\$ = "test_"
d\$ = "test"

IF d\$ < c\$  THEN ? "It works!"
IF d\$ > c\$  THEN ? "error"
IF d\$ <> c\$ THEN ? "It works!"
IF d\$ = c\$  THEN ? "error"

```

Result:

```
It works!
It works!

```

Increment and Decrement Operators

Post-Increment ++ operator

Purpose: Appending ++ to a variable will increase the value of the variable by 1.

 Syntax: ``` variable++ ``` Parameters: None

Remark: If a post-incremented variable appears in an expression, the expression is evaluated using the current value of variable and then the variable is incremented by 1.

++ Pre-Increment operator

Purpose: Prepending ++ to a variable will increase the value of the variable by 1.

 Syntax: ``` ++variable ``` Parameters: None

Remark: If a pre-incremented variable appears in an expression, the variable is incremented by 1 and then the expression is evaluated.

Post Decrement -- operator

Purpose: Appending -- to a variable will decrease the value of the variable by 1.

 Syntax: ``` variable-- ``` Parameters: None

Remark: If a postdecremented variable appears in an expression, the expression is evaluated using the current value of variable and then the variable is decremented by 1.

-- Pre Decrement operator

Purpose: Prepending -- to a variable will decrease the value of the variable by 1.

 Syntax: ``` --variable ``` Parameters: None

Remark: If a predecremented variable appears in an expression, the variable is decremented by 1 and then the expression is evaluated.

Example:

```
DIM a

a = 42
? a++   'post increment(print a, 42, then a = a + 1)
? a     'print a, 43

? ++a   'pre increment(a = a + 1, then print a, 44)
? a     'print a, 44

? a--   'post decrement(print a, 44, then a = a - 1)
? a     'print a, 43

? --a   'pre decrement (a = a - 1, then print a, 42)
? a     'print a, 42

```

Result:

```
42
43
44
44
44
43
42
42

```

Assignment Operators

Plus equals += operator

Purpose: A shorthand form of variable = variable + numeric-expression.

 Syntax: ``` variable += numeric-expression ``` Parameters: None

Minus equals -= operator

Purpose: A shorthand form of variable = variable - numeric-expression.

 Syntax: ``` variable -= numeric-expression ``` Parameters: None

Multiplied by equals *= operator

Purpose: A shorthand form of variable = variable * numeric-expression.

 Syntax: ``` variable *= numeric-expression ``` Parameters: None

Divided by equals /= operator

Purpose: A shorthand form of variable = variable / numeric-expression.

 Syntax: ``` variable /= numeric-expression ``` Parameters: None

Example:

```
DIM a
a = 42

a += 2    'same as a = a + 2
? a

a -= 2    'same as a = a - 2
? a

a *= 2    'same as a = a * 2
? a

a /= 2    'same as a = a / 2
? a

```

Result:

```
44
42
84
42

```